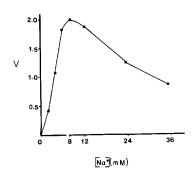
вва 63430

(Mg2+-Na+-K+)-ATPase activity of liver from tumor bearing rats

The occurrence of a (Mg²+- Na+- K+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) in rat liver has previously been demonstrated¹-⁴ but very little work has been done on the kinetics of the effects of Na+ and K+. This is due in part to the low increase in activity produced by addition of Na+ and K+ compared with the ATPase activity seen in the presence of Mg²+ alone. The present communication describes a method for greatly reducing the relative contribution of the Mg²+-stimulated ATPase activity so that a kinetic examination of the Na+ and K+ interaction is made possible.

Livers from Sprague–Dawley rats bearing the ascitic form of Novikoff hepatoma for 10 days were perfused with cold saline, removed, homogenized in 25 ml 0.3 M cold sucrose and centrifuged at 10 000 \times g for 10 min. The sediment was discarded and to the supernatant was added 10 ml 0.8 M sodium citrate, pH 4.1. The mixture was centrifuged at $6000 \times g$ for 10 min, then washed once more with distilled water and finally, the sediment was resuspended in 10 ml distilled water. The enzyme preparation retained its activity at 1° for 12 h, but lost 40% of its activity after being kept frozen overnight. The basic reaction mixture consisted of 0.5 ml protein precipitate, pH 4.1, 6.0 mM ATP, 60 mM Tris, pH 7.8, and 1.8 M urea in a final volume of 3.0 ml. Na⁺ and K⁺ concentrations were as described in the Table I and Figs. 1–3. In experiments where urea was used the samples were preincubated for 20 min before ATP was added because it was found that urea inhibition of Mg²⁺-dependent ATPase activity reaches a peak after this time and then remains steady. The reaction was stopped by addition of 1.0 ml 10% trichloroacetic acid and P_i was determined by the method of FISKE AND Subbaroov⁵.

TABLE I


ATPASE ACTIVITY OF pH 4.1 PROTEIN FRACTION

Each figure is the average of five experiments. Conditions: temperature as indicated in table. Gas phase: air.

Additions	Temp.	ATPase activity*
Nil	37°	0.2
120 mM Na+	37° 37°	0.5
6.0 mM K ⁺	37°	0.2
120 mM Na+, 6.0 mM K+	37°	0.4
6.0 mM Mg ²⁺	37°	8.3
6.0 mM Mg ²⁺ , 6.0 mM K ⁺	37°	8.6
5.0 mM Mg ²⁺ , 120 mM Na ⁺	37°	8.8
6.0 mM Mg ²⁺ , 6.0 mM K+, 120 mM Na+	37°	12.8
6.0 mM Ca ²⁺	37°	7.8
5.0 mM Ca ²⁺ , 6.0 mM K ⁺ , 120 mM Na ⁺	37°	7.7
6.0 mM Mg ²⁺ , 0.2 mM ouabain	37°	8.4
6.0 mM Mg ²⁺ , 6.0 mM K+, 120 mM Na+, 0.2 mM ouabain	37°	10.3
6.0 mM Mg ²⁺ , 1.8 M urea	37°	3.0
6.0 mM Mg ²⁺ , 6.0 mM K ⁺ , 120 mM Na ⁺ , 1.8 M urea	37°	8.0
5.0 mM Mg ²⁺ , 1.8 M urea	45°	1.7
6.0 mM Mg ²⁺ , 6.0 mM K ⁺ , 120 mM Na ⁺ , 1.8 M urea	45°	7.6

^{*} ATPase activity expressed as $\mu g P_i$ liberated per mg protein per 10 min.

Biochim. Biophys. Acta, 191 (1969) 760-762

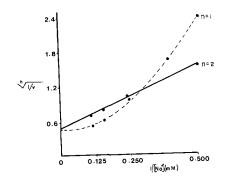


Fig. 1. Effect of Na⁺ concentration on the $(Mg^{2+} - Na^+ - K^+)$ -dependent ATPase activity. v represents the μg P₁ liberated per mg protein per 10 min. Each point represents the average of four experiments. Assay conditions: 0.5 mM K⁺, remainder as described in text. Temp.: 45°; gas phase: air.

Fig. 2. Kinetic analysis of the effect of Na⁺ concentration on $(Mg^{2+} - Na^+ - K^+)$ -ATPase activity. Legend as in Fig. 1.

Table I shows that the ATPase activity seen in the presence of Mg^{2+} is further stimulated only upon the addition of both Na^+ and K^+ , neither of these ions alone having much effect. Ca^{2+} could not substitute in the (Na^+-K^+) -ATPase system for Mg^{2+} and the complete system showed an inhibition by ouabain. Urea decreased the Mg^{2+} -stimulated ATPase activity but had no effect on the Na^+ , K^+ stimulation. Increasing the temperature to 45° in the presence of urea inhibited the Mg^{2+} -stimulated ATPase activity while the level of the $(Mg^{2+}-Na^+-K^+)$ -ATPase remained unaltered. Our system gives a ratio of $Mg^{2+}-Na^+-K^+$ activity to Mg^{2+} activity of 4.5, a ratio which makes kinetic analysis possible.

The effect of increasing concentrations of Na^+ on the ATPase activity in the presence of a constant concentration of K^+ is shown in Fig. 1. The ATPase activity reaches a maximum when the Na^+ concentration corresponds to a Na^+/K^+ ratio of 16. Enzyme activity then falls with increasing Na^+ concentration.

Ahmed et al.⁶ have shown using brain tissue that, at a constant K^+ concentration, the effective number of Na⁺ required to activate the $(Mg^{2+} - Na^+ - K^+)$ -dependent

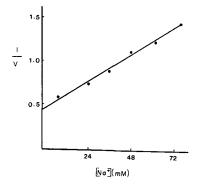


Fig. 3. The effect of inhibitory concentrations of Na⁺ on the $(Mg^{z_+}-Na^+-K^+)$ -dependent ATPase activity. Legend as in Fig. 1.

ATPase may be obtained by plotting $\mathbf{I}/[\mathrm{Na}^+]$ against $\sqrt[n]{-\mathbf{I}/v}$, where the numerical value of n giving a linear relationship is equivalent to the number of Na^+ required to activate the enzyme. Fig. 2 shows that a straight line is obtained when n equals 2 but not when n equals 1. This result suggests that two Na^+ and one K^+ are required to activate the enzyme, a result similar to that seen with brain. The fact that maximum activity occurs at a $\mathrm{Na}^+/\mathrm{K}^+$ ratio of 16 and it requires only two Na^+ to one K^+ to activate the enzyme suggests that K^+ has a much higher affinity for the active site of the enzyme.

The inhibition of ATPase activity by higher concentration of Na⁺ was further investigated over the range 12-72 mM. The results obtained, plotted by the method of Dixon⁷, are shown in Fig. 3. The linear relationship obtained indicates that the site of inhibition by Na⁺ is probably the same as that involved in the activation by K⁺.

This work was supported by a grant from the National Cancer Institute of Canada.

McGill University Cancer Research Unit, BERNARD RUBENSTEIN McIntyre Medical Building, McGill University, Montreal 110, Quebec (Canada)

- I S. L. BONTING, L. L. CARAVAGGIO AND N. M. HAWKINS, Arch. Biochem. Biophys., 98 (1962)
- 2 P. Emmelot, C. J. Bos, E. L. Benedetti and P. Rümke, Biochim. Biophys. Acta, 90 (1964) 126.
- 3 K. Ahmed and J. D. Judah, Biochim. Biophys. Acta, 93 (1964) 603.
- 4 J. A. J. M. BAKKEREN AND S. L. BONTING, Biochim. Biophys. Acta, 150 (1968) 460.
- 5 C. H. FISKE AND Y. SUBBAROW, J. Biol. Chem., 66 (1925) 375.
- 6 K. Ahmed, J. D. Judah and P. G. Scholefield, Biochim. Biophys. Acta, 120 (1966) 351.
- 7 M. DIXON, Biochem. J., 55 (1950) 170.

Received July 21st, 1969

Biochim. Biophys. Acta, 191 (1969) 760-762

вва 63426

Activity against a synthetic substrate by a preparation of extracellular proteinase from Serratia marcescents

Preparations of extracellular proteinase from several strains of the bacterium Serratia marcescens have been found to digest a wide range of proteins and with these substrates showed optimal activity at about pH 9 (refs. 1–5). Purified proteinase was found to split carboxymethylated B chain of insulin at 22 bonds and peptides containing not less than 3 residues were formed⁴. The biological activity of kinin-9 (a nonapeptide) was destroyed by the enzyme⁵ but benzoyl arginine ethyl ester⁴, benzoyl tyrosine ethyl ester¹, peptides ranging from diglycine to hexaglycine⁴, polylysine² and polyaspartic acid² were unhydrolysed. In the present work proteinase isolated from S. marcescens NCIB 10351 proved able to hydrolyse Z-Gly-Pro-Gly-Gly-Pro-Ala at the Gly-Gly bond. This observation could facilitate characterisation of the enzyme.

Biochim. Biophys. Acta, 191 (1969) 762-764